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Hochberg has considered the parabolic partial differential
equation

∂u
∂t

= (−1)n+1∂
2nu
∂x2n , n ≥ 2.

He prove that the fundamental solution of this equation is a
additive signed measure.
In this Talk we will consider the infinite dimensional
generalization of the above equation with an additional
potential function Vt

∂Ut

∂t
= (−1)p+1 1

2
(∆G)pUt + Vt , p ∈ N, (1)

where ∆G is the Gross Laplacian . We will study this equation
with an initial condition and show that the unique solution is a
generalized function.The main tool is the interpretation of the
Gross Laplacian as a convolution operator.
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Preliminary

Let X be a real nuclear Fréchet space with topology given by an
increasing family {| · |p; p ∈ N0} of Hilbertian norms, N0 being
the set of nonnegative integers. Then X is represented as

X =
⋂

p∈N0

Xp,

where the Hilbert space Xp is the completion of X with respect
to the norm | · |p. We use X−p to denote the dual space of Xp.
Then the dual space X ′ of X can be represented as
X ′ =

⋃
p∈N0

X−p and is equipped with the inductive limit
topology.
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Let
N = X + iX

and
Np = Xp + iXp, p ∈ Z,

be the complexifications of X and Xp, respectively.
For n ∈ N0 we denote by N⊗̂n the n-fold symmetric tensor
product of N equipped with the π-topology and by N⊗̂n

p the
n-fold symmetric Hilbertian tensor product of Np. We will
preserve the notation | · |p and | · |−p for the norms on N⊗̂n

p and
N⊗̂n
−p , respectively.
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Young functions

Let θ be a Young function, i.e., it is a continuous, convex, and
increasing function defined on R+ such that θ(0) = 0 and

lim
x→∞

θ(x)/x =∞

We define the conjugate function ( or the Legendre
Transform) θ∗ of θ by

θ∗(x) = sup
t≥0

(
tx − θ(t)

)
, x ≥ 0.
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Functional Spaces

For a Young function θ, we denote by Fθ(N ′) the space of
holomorphic functions on N ′ with exponential growth of
order θ and of minimal type.
Similarly, let Gθ(N) denote the space of holomorphic functions
on N with exponential growth of order θ and of arbitrary type.
Moreover, for each p ∈ Z and m > 0, define

Exp(Np, θ,m)

to be the space of entire functions f on Np satisfying the
condition:

‖f‖θ,p,m = sup
x∈Np

|f (x)|e−θ(m|x |p) <∞.
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Functional Spaces

Then the spaces Fθ(N ′) and Gθ(N) can be represented as

Fθ(N ′) =
⋂

p∈N0,m>0

Exp(N−p, θ,m),

Gθ(N) =
⋃

p∈N0,m>0

Exp(Np, θ,m),

and are equipped with the projective limit topology and the
inductive limit topology, respectively.
The space Fθ(N ′) is called the space of test functions on N ′. Its
dual space F ′θ(N ′), equipped with the strong topology, is called
the space of distributions on N ′.
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Formal Power Series Spaces

For p ∈ N0 and m > 0, we define the Hilbert spaces

Fθ,m(Np) =
{
~ϕ = (ϕn)∞n=0 ; ϕn ∈ N⊗̂n

p ,
∑
n≥0

θ−2
n m−n|ϕn|2p <∞

}
,

Gθ,m(N−p) =
{
~Φ = (Φn)∞n=0 ; Φn ∈ N⊗̂n

−p ,
∑
n≥0

(n!θn)2mn|Φn|2−p <∞
}
,

where
θn = inf

r>0
eθ(r)/rn, n ∈ N0
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Put

Fθ(N) =
⋂

p∈N0,m>0

Fθ,m(Np),

Gθ(N ′) =
⋃

p∈N0,m>0

Gθ,m(N−p).

Theorem
The space Fθ(N) equipped with the projective limit topology is a
nuclear Fréchet space.
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The space Gθ(N ′) carries the dual topology of Fθ(N) with
respect to the C-bilinear pairing given by

〈〈~Φ, ~ϕ 〉〉 =
∑
n≥0

n!〈Φn, ϕn〉, (2)

where
~Φ = (Φn)∞n=0 ∈ Gθ(N ′)

and
~ϕ = (ϕn)∞n=0 ∈ Fθ(N)
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Taylor Map

It was proved by Gannoun-Hachaichi-Rezgui-Ouerdiane that
the Taylor map defined by

T : ϕ 7−→
( 1

n!
ϕ(n)(0)

)∞
n=0

is a topological isomorphism :

Fθ(N ′) 7→ Fθ(N)

Theorem
The Taylor map T establish a topological isomorphism from
Gθ∗(N)) onto Gθ(N ′)).
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The action of a distribution Φ ∈ F ′θ(N ′) on a test function
ϕ ∈ Fθ(N ′) can be expressed in terms of the Taylor map as
follows:

〈〈Φ, ϕ〉〉 = 〈〈~Φ, ~ϕ 〉〉,

where
~Φ = (T ∗)−1Φ

and
~ϕ = Tϕ
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Laplace Transform

It is easy to see that for each ξ ∈ N, the exponential function

eξ(z) = e〈z,ξ〉, z ∈ N ′,

is a test function in the space Fθ(N ′) for any Young function θ.
Thus we can define the Laplace transform of a distribution
Φ ∈ F ′θ(N ′) by

Φ̂(ξ) = 〈〈Φ,eξ〉〉, ξ ∈ N. (3)

Theorem
The Laplace transform is a topological isomorphism from
F ′θ(N ′) onto Gθ∗(N).
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Convolution Calculus

For ϕ ∈ Fθ(N ′), the translation txϕ of ϕ by x ∈ N ′ is defined by

txϕ(y) = ϕ(y − x), y ∈ N ′.

The translation operator tx is a continuous linear operator from
Fθ(N ′) into itself for any x ∈ N ′.
By a convolution operator on the space Fθ(N ′) of test
functions we mean a continuous linear operator from Fθ(N ′)
into itself which commutes with translation operators tx for all
x ∈ N ′.
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Definition
We define the convolution

Φ ∗ ϕ

of a distribution Φ ∈ F ′θ(N ′) and a test function ϕ ∈ Fθ(N ′) to
be the function

(Φ ∗ ϕ)(x) = 〈〈Φ, t−xϕ〉〉, x ∈ N ′.
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Lemma
Let Φ ∈ F ′θ(N ′) arbitrarily fixed.Then for any ϕ ∈ Fθ(N ′),
Φ ∗ ϕ ∈ Fθ(N ′) and the mapping TΦ defined by

TΦ : ϕ 7−→ Φ ∗ ϕ, ϕ ∈ Fθ(N ′),

is a convolution linear operator on Fθ(N ′).
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Convolution operators

Conversely, it was proved by Ben Chrouda-Oued-Ouerdiane
that all convolution operators on Fθ(N ′) occur this way, i.e., if T
is a convolution operator on Fθ(N ′), then there exists a unique
Φ ∈ F ′θ(N ′) such that

T = TΦ

or equivalently,

T (ϕ) = TΦ(ϕ) = Φ ∗ ϕ, ϕ ∈ Fθ(N ′). (4)
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Convolution of two Distributions

Suppose Φ1,Φ2 ∈ F ′θ(N ′). Let TΦ1 and TΦ2 be the convolution
operators given by Φ1 and Φ2, respectively, as in Equation (4).
It is clear that the composition

TΦ1◦TΦ2

is also a convolution operator on Fθ(N ′). Hence there exists a
unique distribution, denoted by

Φ1 ∗ Φ2

in F ′θ(N ′) such that

TΦ1◦TΦ2 = TΦ1∗Φ2 . (5)
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Theorem
For any Φ1,Φ2 ∈ F ′θ(N ′), the distribution Φ1 ∗ Φ2 in Equation (5)
is called the convolution of Φ1 and Φ2, and we have the
following equality via the Laplace transform:

(Φ1 ∗ Φ2)̂ = Φ̂1 Φ̂2. (6)
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White Noise Gel’fand Triple

Let γ be the standard Gaussian measure on the dual space X ′

of the real nuclear space X , namely, its characteristic function
is given by ∫

X ′
ei〈y ,ξ〉 dγ(y) = e−|ξ|

2
0/2, ξ ∈ X ,

where | · |0 is the norm | · |p on X for p = 0.
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Theorem
Suppose that the Young function θ satisfies the condition:

lim
r→+∞

θ(r)

r2 < +∞

Then we obtain the Gel’fand triple

Fθ(N ′) ↪→ L2(X ′, γ) ↪→ F ′θ(N ′).

Habib Ouerdiane Department of Mathematics University of Tunis El-Manar, Tunisia.Evolution equations in infinite dimensional distribution spaces



Introduction
Convolution Calculus

Initial-valued Evolution equation
Gross Laplacian

Convolution of two Distributions
White Noise Gel’fand Triple
convolution Functionals

Remark

In the White Noise theory we consider the particular case
X = S(R), and θ(x) = x2 and use usually the S-Transform to
characterize Hida distributions in term of analytic functionals
with growth conditions ( see for example the works of T. Hida, Y.
Kondratiev, Y. Potthoff, L. Streit, H. H; Kuo, N. Obata and H
Ouerdiane (2011),B. Oksendal, Y. J. Lee, U.C . Ji ...).
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Let β be a continuous, convex, and increasing function on R+.
Suppose f is function in Exp(C, β,m) for some m > 0. For each
distribution Φ in F ′θ(N ′), we define the convolution composition
f ∗(Φ) of f and Φ by (

f ∗(Φ)
)̂ = f (Φ̂). (7)

Its easy to see that f ∗(Φ) belongs to F ′λ(N ′) with

λ = (β ◦ eθ
∗
)∗
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In particular, when

β(x) = x , x ∈ R+,

and
f (z) = ez , z ∈ C

we get a distribution e∗Φ in the space F ′
(eθ∗ )∗

(N ′) for each
Φ ∈ F ′θ(N ′). Moreover, by Equation (7), we have(

e∗Φ
)̂ = eΦ̂. (8)
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Theorem

The distribution e∗Φ has the following series expansion

e∗Φ =
∞∑

n=0

1
n!

Φ∗n,

where Φ∗n = Φ ∗ Φ ∗ · · · ∗ Φ (n times) and the convergence is in
F ′

(eθ∗ )∗
(N ′) with respect to the strong topology.
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Initial-valued Evolution equation

Let I ⊂ R be an interval containing the origin. Consider a family

{Φt ; t ∈ I}

of distributions in F ′θ(N ′). We assume that the function

t 7→ Φt

is continuous from I into F ′θ(N ′). Then the function

t 7→ Φ̂t

is continuous from I into Gθ∗(N). Thus for each t ∈ I, the set

{Φ̂s ; s ∈ [0, t ]}

is a compact subset of Gθ∗(N). In particular, it is bounded in
Gθ∗(N).
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Hence there exist constants p ∈ N0, m > 0, and Ct > 0 such
that

|Φ̂s(ξ)| ≤ Ct eθ
∗(m|ξ|p), ∀ s ∈ [0, t ] and ξ ∈ Np.

This inequality shows that the function

ξ 7→
∫ t

0
Φ̂s(ξ) ds

belongs to the space Gθ∗(N).

Habib Ouerdiane Department of Mathematics University of Tunis El-Manar, Tunisia.Evolution equations in infinite dimensional distribution spaces



Introduction
Convolution Calculus

Initial-valued Evolution equation
Gross Laplacian

Main theorem

Lemma

There exists a unique distribution, denoted by
∫ t

0 Φs ds, in
F ′θ(N ′) satisfying(∫ t

0
Φs ds

)̂ (ξ) =

∫ t

0
Φ̂s(ξ) ds, ξ ∈ N.

Moreover, the process

Et =

∫ t

0
Φs ds, t ∈ I,

is differentiable in F ′θ(N ′) and satisfies the equation

∂

∂t
Et = Φt .

Habib Ouerdiane Department of Mathematics University of Tunis El-Manar, Tunisia.Evolution equations in infinite dimensional distribution spaces



Introduction
Convolution Calculus

Initial-valued Evolution equation
Gross Laplacian

Main theorem

Outline
1 Introduction

Young functions
Functional Spaces
Formal Power Series Spaces
Taylor Map
Laplace Transform

2 Convolution Calculus
Convolution of two Distributions
White Noise Gel’fand Triple
convolution Functionals

3 Initial-valued Evolution equation
Main theorem

4 Gross Laplacian
Gross Laplacian as a convolution operator
Interpretation of the solutions of the evolution equation
case p = 1

Habib Ouerdiane Department of Mathematics University of Tunis El-Manar, Tunisia.Evolution equations in infinite dimensional distribution spaces



Introduction
Convolution Calculus

Initial-valued Evolution equation
Gross Laplacian

Main theorem

Main theorem

Let {Φt} and {Mt} be two continuous F ′θ(N ′)-processes.
Consider the initial value problem

dXt

dt
= Φt ∗ Xt + Mt , X0 = F ∈ F ′θ(N ′). (9)

Theorem

The stochastic differential equation (9) has a unique solution in
F ′

(eθ∗ )∗
(N ′) given by

Xt = F ∗ e∗
∫ t

0 Φs ds +

∫ t

0
e∗

∫ t
s Φu du ∗Ms ds. (10)
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We can apply the previous Theorem to study an evolution
equation for a power of the Gross Laplacian and a generalized
potential function with the initial condition being a generalized
function
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Gross Laplacian

Let ϕ ∈ Fθ(N ′) be represented by

ϕ(x) =
∑
n≥0

〈x⊗n, ϕ(n)〉.

The Gross Laplacian (∆G ϕ)(x) of ϕ at x ∈ N ′ is defined to be

(∆G ϕ)(x) =
∑
n≥0

(n + 2)(n + 1)〈x⊗n, 〈τ, ϕ(n+2)〉〉,

where τ is the trace operator, namely,

〈τ, ξ ⊗ η〉 = 〈ξ, η〉, ξ, η ∈ N.
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Gross Laplacian as a convolution operator

It turns out that the Gross Laplacian ∆G can be extended to be
a continuous linear operator from F ′θ(N ′) into itself and his
extension to generalized functions is a convolution operator :

Theorem
For any Ψ ∈ F ′θ(N ′),

∆GΨ = T ∗Ψ, (11)

where T is the generalized function in F ′θ(N ′) with the Formal
power series is given by

~T = (0,0, τ, 0, · · · ) ∈ Gθ(N ′)

as in Equation (2).
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Theorem
For every positive integer p we have

∆p
GΨ = (T ∗p) ∗Ψ, Ψ ∈ F ′θ(N ′). (12)

Moreover, the generalized function associated with ∆p
G is given

by −−→
T ∗p = (0,0, . . . , τ⊗p,0, . . .). (13)
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Proof

Proof. Using Equations (5) and (11), we obtain

∆p
GΨ = T ∗p ∗Ψ

But the Laplace transform of T is given by

T̂ (ξ) = 〈τ, ξ⊗2〉 = 〈ξ, ξ〉 = |ξ|20.

Hence we have

(̂T ∗p)(ξ) = 〈τ, ξ⊗2〉p = 〈ξ, ξ〉p = |ξ|2p
0 .

For any positive integer p, let S = T ∗p and let the formal power
series associated with S be given by Ŝ = (S0,S1, . . . ,Sn, . . .).
Then we can use the definition of the Laplace transform and
the bilinear pairing between test functions and distributions in
Equation (2) to deduce the following relationship
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(̂T ∗p)(ξ) = 〈T ∗p,eξ〉 =
∑
n≥0

n!〈Sn,
ξ⊗n

n!
〉 = 〈ξ, ξ〉p,

which implies that Sn = 0 for all n 6= 2p and S2p = τ⊗p.
Therefore, −→

S =
−−→
T ∗p = (0,0, . . . , τ⊗p,0, . . .).

This proves Equation (13).
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Theorem

Let θ be a Young function such that limr→∞ θ(r)/r2 <∞ and
F ∈F ′θ(N ′). Then the following evolution equation associated
with the p-th power of the Gross Laplacian and a continuous
F ′θ(N ′)-valued potential function Vt

∂Ut

∂t
= (−1)p+1 1

2
∆p

GUt + Vt , U0 = F , (14)

has a unique solution in the space F ′θ(N ′) given by

Ut = F ∗ e∗
t
2 (−1)p+1T ∗p +

∫ t

0
e∗

t−s
2 (−1)p+1T ∗p ∗ Vs ds, (15)

where T is the generalized function given by Equation (11).
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Proof

Proof. Use Equation (11) to rewrite Equation (14) as

∂Ut

∂t
= (−1)p+1 1

2
T ∗p ∗ Ut + Vt , U0 = F .

Then we can apply Theorem 10 to this equation to get the
unique solution in Equation (15).
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Interpretation of the solutions of the evolution equation

For t > 0, define the distribution µt ,p defined by its Laplace
transform

µ̂t ,p(ξ) = exp
[(−1)p+1t

2
〈ξ, ξ〉p

]
, ξ ∈ N. (16)

From the duality theorem which states that the Laplace
transform is a topological isomorphism from F ′θ(N ′) onto
Gθ∗(N). Hence Equation (16) implies that µt ,p, t > 0, are
generalized functions in the space F ′θ(N ′) with the Young
function given by

θ(x) = x
2p

2p−1 , x ≥ 0.
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Therefore, the solution Ut in equation (15) can be rewritten as

Ut = F ∗ µt ,p +

∫ t

0
µt−s,p ∗ Vs ds.
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In particular, when Vt = 0, we have the evolution equation

∂Ut

∂t
= (−1)p+1 1

2
∆p

GUt , U0 = F , (17)

which has a unique solution given by

Ut = F ∗ µt ,p. (18)

Hochberg has studied the one-dimensional case of Equation
(17) and showed that the fundamental solution defines a finitely
additive measure with unbounded total variation. Using the
white noise theory, we can now interpret this “finitely additive
measure with unbounded total variation" as a generalized
function in the space F ′θ(N ′), which is given by Equation (18).
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This phenomenon is very much like the case of Feynman
integral, which had been regarded as a finitely additive measure
with unbounded total variation before the theory of white noise
was introduced by T. Hida in 1975. It is a well-known fact that
the Feynman integral is a generalized function.
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When p = 1, Equation (16) gives the equality

µ̂t ,1(ξ) = exp
[
− t

2
|ξ|20
]
, ξ ∈ X ,

which shows that µt ,1 is the standard Gaussian measure on X ′

with variance t , i.e., µt ,1 = γt with γt defined by

γt (·) = γ
( ·√

t

)
.

Note that the probability measure µt ,1 induces a positive
distribution in the space F ′θ(N ′) given by

〈〈µt ,1ϕ〉〉 =

∫
X ′
ϕ(x) dµt ,1(x) =

∫
X ′
ϕ(
√

t x) dγ(x), ϕ ∈ Fθ(N ′).

. Moreover, if the potential function is given by Vt = αẆt with
α ∈ R and Ẇt a white noise, then the solution in Equation (15)
reduces to the one obtained by Barhoumi-Kuo-Ouerdiane.
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